This paper presents the DTN architecture, designed for networks with exceptionally poor or unpredictable performance characteristics. The existing TCP/IP service model makes basic assumptions about the existence of end-to-end paths between any two nodes, as well as upper bounds on round-trip times and packet drop probabilities. The growing importance of networks that violate these assumptions - for example, sensor networks or military ad-hoc networks - is the motivation behind the DTN architecture. Rather than adopting band-aid solutions using link-repair approaches or proxies, DTN uses a messaging scheme and is based on a partially connected network graph model.
Unlike the majority of papers covered in this course (apart from the really early ones), this challenged some fundamental assumptions of the Internet. Given that deep-space and military communication, as a few examples, will remain essential for years to come, the motivation behind a DTN-like architecture is very convincing. It's compatible with the current TCP/IP stack, appears to be a practical solution at first-glance and definitely merits further study. This one definitely belongs in the syllabus as a bit of a wild-card paper.
Monday, November 17, 2008
Subscribe to:
Post Comments (Atom)
1 comment:
I heard recently that elements of this architecture have recently been deployed as part of an on-going deep space mission, so this work is really having some practical impact.
Thanks, by the way, for catching up with your blogs. I know it has been a busy interviewing season for you!
Post a Comment